Carrier Supporting Carrier

This document details the concept know as Carrier Supporting Carrier. The design will be explained first followed by an example showing both the control path advertisements and the data plane traffic flow.

CsC Design

CsC works by having one Service Provider (the Backbone Provider), treat another Provider (the Customer Provider) as a customer. However this isn't a simple Option A setup. In order to maintain a continuous LSP from one part the Customer Providers network to another, prefixes and corresponding labels must be exchanged between the Customer and Backbone Providers. These prefixes correspond to the Customer Providers LSP endpoints which are typically router loopbacks.

There are two ways to do this:

- 1. Run BGP Labelled Unicast between the Customer and Backbone Providers edge routers.
 - 2. Run IGP and LDP between the Customer and Backbone Providers edge routers.

Both options will be explored in this document. Once these prefixes + labels have been exchanged, they need to be distributed throughout the Customer Providers networks. This can be done either using BGP LU or redistribution into the local IGP, from which LDP will then dynamically allocated labels. Only the later option is show in the CLI output here, but the downloadable GNS3 lab that accompanies this document uses both.

The Backbone Provider must put the attachment circuits connecting to the Customer Provider into a VRF. This results in VRF aware LDP being run if the IGP + LDP option is used between the Customer and Backbone Providers.

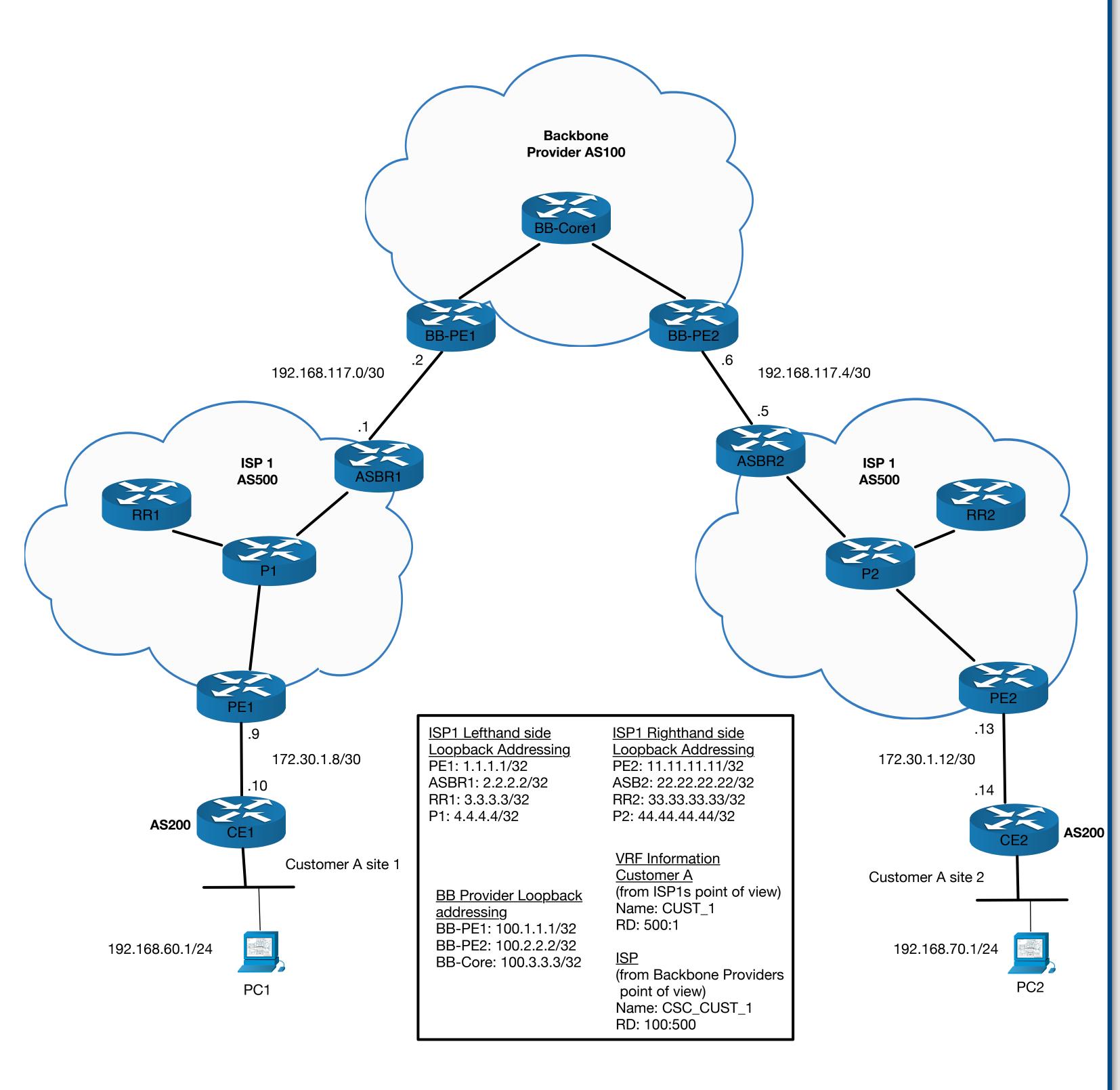
The Customer Provider does not need to put its attachment circuits to the Backbone Provider into a VRF.

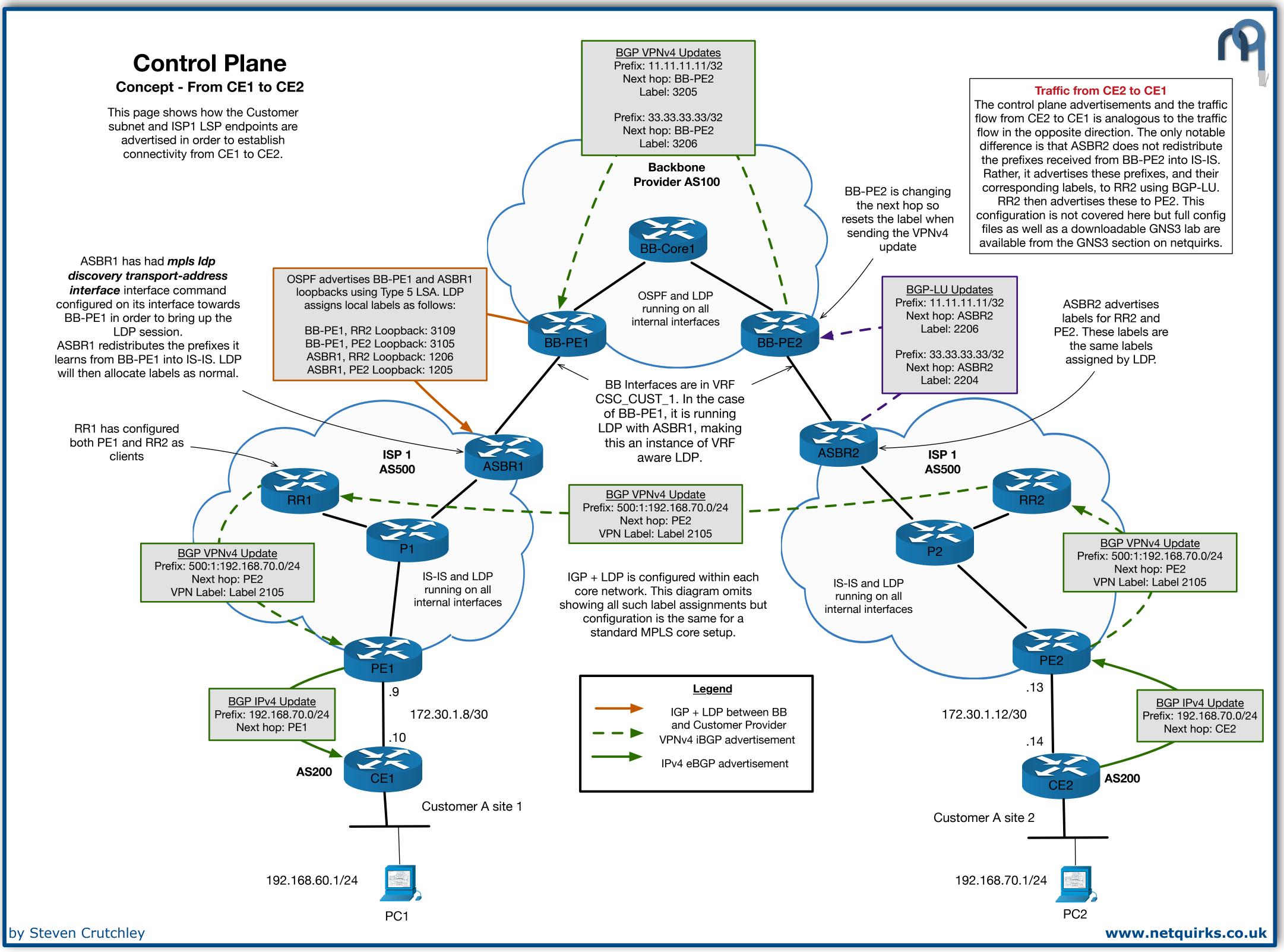
The Backbone Provider can then run any internal MPLS setup it wishes. Here we will use standard MPLS VPNv4 between the Backbone Provider PEs. The Customer Provider runs the same type of setup with respect to *its* customers.

CsC Example

To illustrate these concepts, the sample network shown on the right is used.

Customer A has two sites connected to ISP1 in a VRF called CUST_1.


ISP1 has two separate disparate areas. The Backbone Provider implements CsC to connect to the two sides together. ISP1 has one route reflector in each area running VPNv4 to the PE routers, and between each other. IS-IS and LDP is used throughout ISP1.


The connection between ASBR1 and BB-PE1 is running OSPF and LDP. The loopbacks of RR1 and PE1 are redistributed from IS-IS into OSPF and sent to BB-PE1. The loopback for RR1 is needed to provide reachability for the iBGP VPNv4 session between the reflectors. The loopback for PE1 is needed for next-hop reachability when using this PE as an LSP endpoint. ASBR1 also redistributes from OSPF into IS-IS. This is expected to be loopbacks for RR2 and PE2. LDP will then allocate labels for these.

The connection between ASBR2 and BB-PE2 is running BGP-LU. The loopbacks for RR2 and PE2 are advertised to BB-PE2 for the same reason ASBR1 redistributes from IS-IS to OSPF. ABSR2 should be receiving the loopback for RR1 and PE1. Instead of redistributing into the local IGP, ASRB1 runs BGP-LU to RR2 who in turn runs BGP-LU to PE2 into order to communicate the label for PE1.

The examples given in this document will follow the control plane advertisements and traffic flow involved when PC1 sends a packet to PC2. All output shown and referenced is based on Cisco IOS. The local PC is represented by loopbacks on the CE routers.

Control Plane CLI output - From CE1 to CE2 BB-PE2#sh bgp vpnv4 unicast vrf CSC_CUST_ISP1 11.11.11.11/32 BGP routing table entry for 100:500:11.11.11.11/32, version 24 Paths: (1 available, best #1, table CSC_CUST_ISP1) Advertised to update-groups: BB-PE1#show mpls forwarding-table vrf CSC_CUST_ISP1 11.11.11.11 detail Local Outgoing Prefix Bytes tag Outgoing Next Hop This page shows relevant CLI output 192.168.117.5 from 192.168.117.5 (22.22.22.22) tag or VC or Tunnel Id switched interface Origin IGP, metric 20, localpref 100, valid, external, best 3105 3205 11.11.11.11/32[V] 18660 Fa0/0 10.30.13.3 for the CsC setup - demonstrating how Extended Community: RT:100:500 MAC/Encaps=14/22, MRU=1496, Tag Stack{3301 3205} label switching is done and what you'd mpls labels in/out 3205/2206 C20627A40000C20427A200008847 00CE500000C85000 BB-PE2#sh mpls forwarding-table vrf CSC_CUST_ISP1 11.11.11.11 detail VPN route: CSC_CUST_ISP1 expect to see. Local Outgoing Prefix Bytes tag Outgoing Next Hop No output feature configured tag tag or VC or Tunnel Id switched interface Per-packet load-sharing 11.11.11.11/32[V] 21564 Fa0/1 3205 2206 BB-PE1#sh run | sec router ospf router ospf 2 vrf CSC CUST ISP1 192.168.117.5 $\texttt{MAC/Encaps=}14/18, \ \texttt{MRU=}1500, \ \texttt{Tag Stack}\{\texttt{2206}\}$ log-adjacency-changes C20E279E0001C20527A300018847 0089E000 redistribute bgp 100 subnets VPN route: CSC_CUST_ISP1 router ospf 1 No output feature configured mpls ldp autoconfig Per-packet load-sharing router-id 100.1.1.1 log-adjacency-changes passive-interface Loopback0 **Backbone** BB-PE1#sh run interface Fa0/1 Building configuration... Provider AS100 ASBR2#show bgp ipv4 unicast 11.11.11.11 BGP routing table entry for 11.11.11.11/32, version 22 Current configuration : 218 bytes Paths: (1 available, best #1, table Default-IP-Routing-Table) Advertised to update-groups: interface FastEthernet0/1 description link to ASBR1 Local ip vrf forwarding CSC_CUST_ISP1 10.20.24.4 from 0.0.0.0 (22.22.22.22) ip address 192.168.117.2 255.255.255.252 Origin IGP, metric 20, localpref 100, weight 32768, valid, ip ospf network point-to-point sourced, local, best ip ospf 2 area 0 mpls labels in/out 2206(from LDP)/nolabel mpls ip ASBR2#show bgp ipv4 unicast 33.33.33.33 BGP routing table entry for 33.33.33/32, version 29 Paths: (1 available, best #1, table Default-IP-Routing-Table) BB-PE1# OSPF and LDP Advertised to update-groups: running on all Local internal interfaces 10.20.24.4 from 0.0.0.0 (22.22.22.22) Origin IGP, metric 20, localpref 100, weight 32768, valid, ASBR1#sh mpls forwarding-table sourced, local, best BB-PE2 Bytes tag Outgoing Next Hop Local Outgoing Prefix mpls labels in/out 2204(from LDP)/nolabel tag or VC or Tunnel Id switched interface ASBR2# 10.10.24.4 1200 Pop tag 4.4.4.4/32 Fa0/0 1201 Pop tag 10.10.14.0/24 10.10.24.4 Fa0/0 10.10.34.0/24 Fa0/0 10.10.24.4 Pop tag Fa0/0 1.1.1.1/32 26328 10.10.24.4 1203 1401 17701 1204 1400 3.3.3.3/32 Fa0/0 10.10.24.4 1205 3105 11.11.11.11/32 16332 Fa0/1 192.168.117.2 1206 3109 33.33.33/32 7877 192.168.117.2 Fa0/1 ASBR1#sh run | sec router ospf router ospf 1 router-id 2.2.2.2 log-adjacency-changes detail ISP₁ ISP 1 redistribute isis LAB level-2 subnets route-map LOOPBACKS match ip address prefix-list LOOPBACKS **AS500 AS500** ASBR1#sh route-map LOOPBACKS route-map LOOPBACKS, permit, sequence 10 Match clauses: ip address prefix-lists: LOOPBACKS Set clauses: Policy routing matches: 0 packets, 0 bytes ASBR1#sh ip pref ASBR1#sh ip prefix-list LOOPBACKS ip prefix-list LOOPBACKS: 2 entries seq 5 permit 3.3.3.3/32 P1#sh mpls forwarding-table seq 10 permit 1.1.1.1/32 PE2#sh bgp vpnv4 unicast vrf CUST_1 192.168.70.1 Local Outgoing Prefix Bytes tag Outgoing Next Hop ASBR1# BGP routing table entry for 500:1:192.168.70.0/24, version 3 tag or VC or Tunnel Id switched interface Paths: (1 available, best #1, table CUST_1) 10.10.34.3 1400 Pop tag 3.3.3.3/32 39241 Fa1/0 Advertised to update-groups: 10.10.14.1 1401 Pop tag 1.1.1.1/32 Fa0/0 10.10.24.2 2.2.2.2/32 Fa0/1 192.168.117.0/30 0 1403 Fa0/1 10.10.24.2 Pop tag 172.30.1.14 from 172.30.1.14 (192.168.70.1) 1404 1205 11.11.11.11/32 14604 Fa0/1 10.10.24.2 RR1#sh bgp vpnv4 unicast rd 500:1 192.168.70.0 Origin incomplete, metric 0, localpref 100, valid, external, best 1405 1206 33.33.33.33/32 10487 Fa0/1 10.10.24.2 BGP routing table entry for 500:1:192.168.70.0/24, version 33 Extended Community: RT:500:1 Paths: (1 available, best #1, no table) mpls labels in/out 2105/nolabel Advertised to update-groups: 200, (Received from a RR-client) 11.11.11.11 (metric 20) from 33.33.33.33 (33.33.33.33) Origin incomplete, metric 0, localpref 100, valid, internal, PE1#sh bgp vpnv4 unicast vrf CUST 1 192.168.70.1 <u>Legend</u> .13 BGP routing table entry for 500:1:192.168.70.0/24, version 38 Extended Community: RT:500:1 Paths: (1 available, best #1, table CUST_1) IGP + LDP between BB Originator: 11.11.11.11, Cluster list: 33.33.33.33 Advertised to update-groups: 172.30.1.8/30 172.30.1.12/30 mpls labels in/out nolabel/2105 and Customer Provider RR1#sh ip route 33.33.33.33 200 Routing entry for 33.33.33.33/32 VPNv4 iBGP advertisement 11.11.11.11 (metric 20) from 3.3.3.3 (3.3.3.3) .14 Known via "isis", distance 115, metric 20, type level-2 Origin incomplete, metric 0, localpref 100, valid, internal, best Redistributing via isis Extended Community: RT:500:1 IPv4 eBGP advertisement Last update from 10.10.34.4 on FastEthernet0/0, 01:56:36 ago Originator: 11.11.11.11, Cluster list: 3.3.3.3, 33.33.33.33 Routing Descriptor Blocks: AS200 mpls labels in/out nolabel/2105 * 10.10.34.4, from 2.2.2.2, via FastEthernet0/0 **AS200** PE1#sh mpls fo Route metric is 20, traffic share count is 1 PE1#sh mpls forwarding-table vr PE1#sh mpls forwarding-table vrf CUST_1 192.168.70.0 Customer A site 1 Local Outgoing Prefix Bytes tag Outgoing Next Hop tag tag or VC or Tunnel Id switched interface Customer A site 2 None 2105 192.168.70.0/24 0 Fa0/0 10.10.14.4 PE1#sh mpls forwarding-table vrf CUST_1 192.168.70.0 de PE1#sh mpls forwarding-table vrf CUST_1 192.168.70.0 detail Local Outgoing Prefix Bytes tag Outgoing Next Hop

tag or VC or Tunnel Id switched interface

MAC/Encaps=14/22, MRU=1496, Tag Stack{1404 2105}

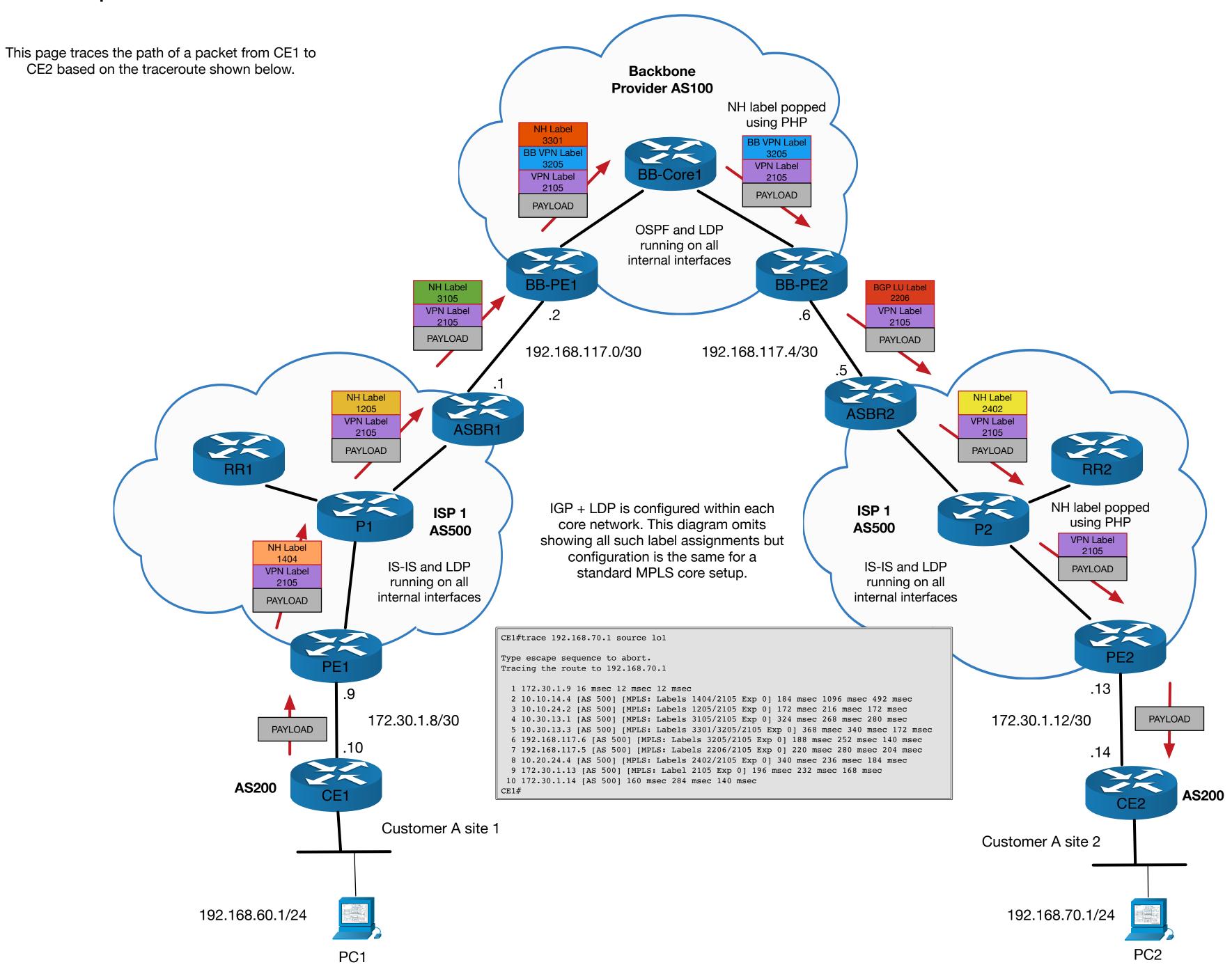
C20227A10000C201279D00008847 0057C00000839000

No output feature configured

Per-packet load-sharing

None 2105 192.168.70.0/24 0 Fa0/0 10.10.14.4

192.168.70.1/24


by Steven Crutchley

192.168.60.1/24

Data Plane

Life of a packet from CE1 to CE2

Traceroute Step	Forwarding Process
1	CE1 has a route for 192.168.70.0/42 via BGP with a next-hop of 192.30.1.9. It forwards the packet to PE1.
2	PE1 has a BGP VPNv4 route for 192.168.70/24 with a VPN label of 2105 and next-hop of 11.11.11.11/32 (PE2).
	PE1 recursively looks for a route to PE2. It finds an IS-IS route with a next-hop of P1, out of a directly connected interface running LDP. P1's local label for PE2 is 1404.
	So, PE1 imposes a VPN label of 2105 and then a transport (or next-hop) label of 1404.
3	P1 receives the labelled packet, sees the top label (1404) and matches its local label for PE2. P1's next hop for PE2 is ABSR1. P1 swaps 1404 label for 1205 - ABSR1's local label for PE2
4	ASBR1 receives the labelled packet and sees the top label matches its local label for PE2. This label was assigned by the LDP session running between ABSR1 and BB-PE1. ASBR2 swaps 1205 with 3105 - BB-PE1's local label for PE2.
5	BB-PE1 receives the labelled packet and sees the top label matches its local label for the 11.11.11.11/32 route in its VRF CSC_CUST_ISP1. BB-PE1 has a BGP VPNv4 route for 11.11.11.11/32 with a VPN label of 3205 and next-hop of 100.1.1.1 (BB-PE2).
	BB-PE1 recursively looks for a route to BB-PE2. It finds an OSPF route with a next-hop of BB-PE3, out of a directly connected interface running LDP. BB-PE3's local label for BB-PE2 is 3301.
	BB-PE1 swaps the top label 3105 with the VPN label 3205. It then imposes the transport label of 3301. At this point there are 3 labels on the stack (from top to bottom): 3301/3205/2105
6	BB-PE3 receives the labelled packet and sees the top label matches it's local label for BB-PE2. BB-PE3's next hop for BB-PE2 is via a directly connected interface running LDP. BB-PE3 is the penultimate hop to BB-PE2 so it simply pops the top transport label and forwards the packet to BB-PE2 (normal PHP behaviour).
7	BB-PE2 receives the labelled packet and sees the top label matches its VPN label for 11.11.11.11/32 (PE2) in VRF CSC_CUST_ISP1. BB-PE2's VRF route to PE2 is known via BGP-LU with a next-hop of 192.168.117.5. BB-PE2 has also received a label value of 2206 for this prefix over this BGP-LU session so it's LFIB has a swap entry.
	BB-PE2 swaps the top label 3205 with the BGP-LU learned label 2206 and forwards it to ASBR2.
8	ASBR2 receives the labelled packet and sees the top label matches its local LDP assigned label for 11.11.11.11/32 (PE2). ASBR2's next hop for PE2 is P2. ASBR2 swaps 2206 label for 2402 - P2's local label for PE2.
9	P2 receives the labelled packet and sees the top label matches its local label for PE2. P2's next hop for PE2 is via a directly connected interface running LDP. P2 is the penultimate hop to PE2 so it simply pops the top transport label and forwards the packet to PE2 (normal PHP behaviour).
10	PE2 receives the labelled packet and sees the top (and only) label matches its VPN label for 192.168.70.0/24 (CE2's loopback 1) in VRF CUST_1. PE2 VRF next-hop for 192.168.70.0/24 is known via IPv4 BGP out of a local attachment circuit in VRF CUST_1. PE2 removes the 2105 label and forwards the ICMP packet unlabelled.

by Steven Crutchley www.netquirks.co.uk